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Diagonalisation of a colouring problem (on a strip) 

G M Cicuta'it and A Pavane$ 
+ Dipartimento di Fisica, Universita di Bari, Via Amendola 173, 70126 Bari, Italy 
: lstituto Nazionale di Fisica Nucleare,  Sezione di Bari, Bari, Italy 

Received 16 May 1989 

Abstract. A bond  colouring problem on a honeycomb lattice, equikalent to evaluating the 
residual entropy of a four-state antiferromagnetic Potts model,  is considered. The transfer 
matrix for strips with three o r  four hexagons in each row and any number of rows is 
diagnonalised. 

1. Introduction 

Problems which may be solved exactly in two dimensions in statistical mechanics are 
very interesting not only because they involve various mathematical techniques but 
also for their possible relations with bidimensional quantum field theories [ l] .  In 
recent years, bidimensional ferromagnetic models in finite or  infinite domains, with a 
variety of boundary conditions at their critical temperature, were studied and their 
quite interesting relations with conformally invariant field theories [ 2 ]  were exhibited. 

Bidimensional antiferromagnetic models seem less well understood and  their poss- 
ible relations with a corresponding field theory in a continuous space remain problem- 
atic [3]. In  this paper some investigations are described concerning the residual entropy 
of a combinatorial model, which was solved by Baxter in a bidimensional infinite 
domain long ago [4]. The model was defined on a regular honeycomb lattice with 
toroidal boundary conditions. In  the present paper, the model is studied for strips of 
finite width and  infinite length, with the same boundary conditions. 

In 0 2 we outline the construction of a set of projectors which should be useful for 
exactly diagonalising a variety of transfer matrices defined on honeycomb lattices with 
cylindrical boundary conditions. 

I n  9 3 we report the evaluation of the finite transfer matrix for the model studied 
here and  its exact diagonalisation. The leading eigenvalue, computed by Baxter for 
the infinite domain in both directions, is quoted to estimate the rate of convergence 
of the finite-width-strip computation. 

The combinatorial model of Baxter may be regarded as an antiferromagnetic Potts 
model at zero temperature and we hope that the present study will be useful for 
understanding general properties of the ground state of antiferromagnetic models. The 
combinatorial model is also related to a general class of colouring problems of planar 
graphs. These relations will be discussed in a paper in preparation. 

2. The group algebra, the invariant basis elements and projectors 

Let us consider a bidimensional square lattice with n sites in each row, a random 
variable x, associated with site i in a given row, with cylindrical boundary conditions, 
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x,+, = x,, i = 1 , .  . . , n,  and any number of horizontal rows. It is then natural to consider 
the transfer matrix associated with a horizontal row and its invariance properties. In  
the usual way T, ,,,,..,,,, I' ,,...,,.,, relates the configurations 2 and J on two consecutive rows 
and the product of transfer matrices corresponding to m consecutive rows defines a 
partition function for a lattice with m + 1 rows and n columns. 

We are interested in the exact diagonalisation of the one-row transfer matrix (for 
some value of n ) .  

One expects the transfer matrix to be invariant under the transformation 

(2.1) - T:> ,..,. Y , , , X , . l > . .  ,l ',,,I', - 7Tr-I = TYl.,> ,... ) r ,,,,' I . . . ,  j',, 

where P is the permutation 

) 1 2 n - 1  n ( 2 3  n 1 

since this would correspond to a coordinate system translated one lattice space to the 
right with respect to the previous one. 

Furthermore, in a problem with left/right invariance, one expects the transfer matrix 
to be invariant also for the transformation 

T'  = uTu' = T (2.2) 

where 

2 . . .  n - 1  n )  
n - 1  * . .  2 1 (2.3) 

T and U are generators of the dihedral group D, ,  of order 2 n  and the transfer matrix 
should be invariant under the transformation 

d E D,, .  (2.4) T ' =  dTd-' = T 

We consider the permutation group S,.  For each 7rR E S, we consider its conjugate 
elements by a generic element d E D ,  : 

{ 7 r R }  = set of d7rRd-' d E D , .  (2.5) 

The classes of conjugate elements are a partition of S,. For the lattice with three sites 
in each row, the permutation group S 3  coincides with the dihedral group D 3 ,  then the 
partition in conjugate classes is just the partition of permutations in the three classes 
with different cycle lengths 

1 :  (1 ) (2) (3)  = e 2 :  (12),( 13),(23) 3: (123),( 132). (2.6) 

For the lattice with four sites in each row one easily obtains the eight classes: 

1 :  ( 1 ) (2 ) (3 ) (4 )  = e 

2: (12),(14),(23),(34) 

3: (13),(24) 

4: (123),( 132),(124),( 142),(134),( 143),(234),(243) 

5: (12)(34),( 14)(23) 
(2.7) 
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6: (13)(24) 

7 :  (1234),( 1432) 

8: (1342),( 1243),(1324),(1423). 

Next we consider the group algebra [ 5 ]  A,, of elements x = Z R X R T R  where rR E S,, are 
regarded as the basis of a linear vector space of dimension n !  and the coefficients x R  
are rational numbers. We are particularly interested in the elements: 

a ,  = e a 2  = ( 1 2 ) + (  13 )+(23)  a )  = (123) + (132).  (2.8) 

And in the eight elements of the algebra for S4:  

a ,  = e 

a 2  = (12) + (14) + (23) + (34) 

( ~ , = ( 1 3 ) + ( 2 4 )  

a d =  (123)+(132)+(124)+(142)+(134)+(143)+(234)+(243)  

a s  = (12)(34) + (14)(23) 

ah = (13)(24) 

(2.9) 

a ,  = (1234) + (1432) 

a x =  (1342)+(1243)+(1324)+(1423).  

By definition, all elements a in (2.8) and (2.9) are essentially invariant under 
conjugation by elements of the dihedral group: 

da,d- '  = k (  i )a ,  (2.10) 

k ( i )  being a rational constant (the index i is not summed), d E D,,. 
Furthermore, they are the invariant elements of the algebra A,, with lowest 

dimensionality, i.e. no  invariant linear combinations of permutations xR E S, exist with 
fewer elements rR. 

We expect that physical operators should be invariant under conjugation by ele- 
ments d E D,. Furthermore, some of them may be expressed as elements of A,>. In 
this case those operators should be themselves linear combinations of the elements a. 
In the next section, we discuss the one-row transfer matrix for a combinational problem, 
which has the above-mentioned properties. 

In order to compute indefinite powers of operators of this type, one would like to 
rewrite each element of the invariant basis a as linear combination of further elements 
Pi E A,, which act as projectors in the algebra: 

PjP, = v, identity = ZP,  bP, = P,b = k (  b )  P, (2.11) 

with k ( b )  being a real constant, for each invariant element b E A,,. 
Since the projectors are themslves invariant elements of A,,, their generic forms are 

P = c c p , .  (2.12) 

By substituting the expressions (2.12) into (2.11),  the coefficients c, may be found. Yet 
is more expedient to use just the last of (2.11) by requiring a,,P= k ( h ) P  for a couple 
of basis elements ai,. This is usually enough to determine all projectors, except those 
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for which k ( h )  = 0. In either case the basic tool is the (commutative) multiplication 
table of the basis elements, which we provide in the appendix. 

PI = ( a l  -a,+ ( ~ , ) / 6  

And for the algebra A,: 

Then we find the projectors for the algebra A,: 

Pr = (a1 +  CY^+ a3)/6 9 3  = (2a1 - a , ) / 3 .  (2.13) 

PI = (a1 -a2- ( I 3  + a,+ (Yg- (Y, - (Y8)/24 

P2 = ( cu I + CY, + L Y ~  - CY? - C X ~ ) /  8 

P3 = ( 2 a  I - 2 ~ ~ 6 -  ( ~ 2  + ~ ~ 8 ) / ’ 8  

f 4 =  [2( ( Y I  + f f g  + a 6 - ( Y j  - a,) + (a2 + ( Y 8 -  4 1 / 2 4  

P? = [ 2 ( a ,  + a,+ &,+a,+ a,) - - ( f f ~ + C r , +  4 1 / 2 4  

f 6 =  (a1 + C y ? +  f f , - f f 5 - ~ ~ 7 ) / 8  

(2.14) 

The basis elements of A, may be written as linear combinations of the projectors: 
3 =c p, a 2 = - 3 P , + 3 P 2  a 3 = 2 P 1 + 2 P 2 -  P,. (2.15) 
I 

Similarly for the basis elements of A4 we obtain. 
x 

f f l  =c  p, 
I 

(2.16) 

3. Diagonalisation of the transfer matrix on a strip 

We study in this section a colouring problem, solved by Baxter for the planar honeycomb 
lattice, unbounded in every direction, with toroidal boundary conditions. To each 
bond there corresponds a random variable, or colour, which takes one of three possible 
values and the problem is the computation of the number of proper colourings (such 
that three different colours are incident on each vertex). As with Baxter, it is useful 
to distort the honeycomb cells to produce rows of rectangularly shaped hexagons such 
that each horizontal row of cells is horizontally translated by half a cell with respect 
to its two adjacent horizontal rows. 
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We study this problem for a lattice where each row has a finite number of cells, 
with cylindrical boundary conditions, all rows have the same number of cells, and  the 
number of rows is unbounded. We consider the transfer matrix for one row with n 
cells, its indices of rows and columns labelling the possible values of colours on the 
n vertical bonds above and  the n vertical bonds below the horizontal row. That is, 
the transfer matrix is a square matrix with 3" rows, where the row index corresponds 
to a colouring of the vertical bonds above the horizontal line, and  the column index 
corresponds to one of the 3" colourings of the vertical bonds below the horizontal 
line; each entry is a non-negative integer corresponding to the number of proper 
colourings of the horizontal row of cells with fixed external vertical coloured bonds. 

Of course the matrix product of transfer matrices corresponding to two adjacent 
horizontal rows is a square matrix of the same dimension, whose entries are the number 
of proper colourings for a lattice with two horizontal rows and specified vertical external 
coloured bonds. 

Before evaluating the transfer matrix for one row with three cells and  that for one 
row with four cells, we recall the relation of this colouring problem with the residual 
entropy of a four-state Potts antiferromagnetic model at zero temperature. 

Indeed it is known that a proper colouring of the bonds of this lattice with three 
colours corresponds to a proper colouring of the faces of the same lattice with four 
colours [l]. Furthermore it is well known that for planar graphs, regions (or faces) 
are exchanged into vertices (or sites) by considering the dual graph. Then the number 
of proper colourings for the bonds of the honeycomb lattice with three colours is 
equivalent to the number of proper colourings of the sites (with four colours) of the 
dual lattice (i.e. equilateral triangles with six bonds incident on each vertex), the latter 
number of colourings being the residual entropy of a four-state antiferromagnetic 
model on the second lattice. 

In order to evaluate the transfer matrix for one row and  a given number of cells, 
we find it convenient to recall the Penrose method for relating the number of proper 
colourings of a trivalent planar graph to the product of m structure constants of SU(2),  
m being the number of vertices of the graph [6]. The latter product is usefully evaluated 
by the general graphic rules given by CvitanoviC for the products of structure constants 
of any simple Lie algebra [7]. 

The transfer matrix for a horizontal row with three cells may be written 

T(71= 4 ~ ~ 1  - 2 ~ ~ + 3 a ?  (3.1) 
with the basis elements a as given in (2.8). 

The transfer matrix for a horizontal row with four cells may be written 

T(4) = 1 2 ~ ~ 1 -  8a2 -6a?  + 6 ~ 4 + 6 a 5 +  2ag - S a 7  - 4 ~ ~ 8 .  (3.2) 

T(? ,=  16P ,+4P2+  P, (3.3) 
T,,, = 144PI + 4 P2 + 18 P3 + 4 P, - 4 P6 + 4P7 + 2 PE. (3.4) 

For purpose of comparison between the residual entropy per site in a strip of finite 
width and  infinite length (with toroidal boundary conditions) and the same entropy 
for the unbounded strip in both directions (evaluated by Baxter), just the largest 
eigenvalue of the transfer matrix is relevant. One may define the residual entropy per 
site as 

(3.5) 

By use of (2.15) and (2.16), the transfer matrices are explicitly diagonalised: 

S = K log Z Z =  h - i  Iim ( A ' ) '  " k  
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where A is the largest eigenvalue of the transfer matrix (provided the corresponding 
eigenspace has non-vanishing dimensionality) for one  row with c cells, M is the number 
of sites on a row, M =4c,  N being the number of horizontal rows. We find Z,= 
( 16)”12 = 2”,  for the strip with three hexagons in  each row and  Z4 = ( 18)”16-- 1.197 99 
for the strip with four hexagons in each row. This differs by less than 1% from the 
exact value, computed by Baxter for the strip with infinitely many horizontal cells, 
which is Z, - 1.208 72. 

Appendix 

The products of the three basic elements of the algebra A,, given in (2.8) are 

ala,  = a ,  ( a , ) 2  = 3a,  +3a,  

LY?a3 = 2az ( a J  = 2 a 1  + a i .  ( A l )  

The products among the eight basis elements of the algebra A4, given in (2.9), are 
a ,a ,  = a ,  
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